Completed: 01/09/2014
Lead Researcher: Debbie Inglis

This project is the next phase of the bud hardiness component of a larger winter injury research initiative (CanAdvance project – Evaluating Grapevine and Tender Fruit Winter Hardiness to Developing Best Environmental Practices for Using wind Machines to Reduce the Effects of Cold Injury 2005-2008) that was completed in spring 2009. Now that the measurement techniques have been developed to reliably measure bud hardiness, factors that influence bud hardiness can now be assessed to develop Best Practices Guidelines to Optimize Winter Hardiness for Grapevines.

Monitoring vine acclimation to cold using low temperature exotherms and the Tenny Freezer unit has allowed researchers to monitor the temperature at which 10%, 50% or 90% of buds were killed for 12 Vitis vinifera varieties and two hybrid varieties across Niagara. Monitoring bud hardiness throughout the dormant period has proven to be an invaluable tool to assist grape growers in managing winter injury by using the changing bud hardiness data to determine when wind machine use is warranted to protect the vines and by also understanding when, during the dormant period, bud injury occurred.

With this established and reliable measurement technique, we are now in a position to further extend this research to look at factors that optimize vine hardiness.

Read Final Report

Completed: 01/12/2012
Lead Researcher: Wendy McFadden-Smith

Female grape berry moth trap catches (as well as other biofixes, such as bloom of wild grape and male moth trap catches) and a model using degree day accumulation will be used to model the development of GBM over the season. This information will be used to fine-tune our sprays for GBM by having the most accurate estimates of moth activity. Cultural or chemical methods to change microclimate and/or canopy architecture will be evaluated for their potential to reduce GBM injury. The relationship between bunch rots and GBM injury will also be investigated.

Mating disruption is used in many vineyards in Ontario. The application of twist tie dispensers is labour intensive and may preclude wider adoption of this practice. If border applications of twist ties or a new sprayable formulation of pheromone are shown to be effective, adoption of this practice could reduce the cost of this method and could encourage wide-spread use of the technology.

Read Final Report

Completed: 01/04/2012
Lead Researcher: Wendy McFadden-Smith

Cultural and chemical treatments will be evaluated for their effectiveness in reducing sour rot and volatile acidity in the vineyard. Treatments to alter the architecture of the clusters, reducing berry-to-berry contact and duration of optimal conditions for infection by sour rot organisms will be evaluated in replicated trials. Chemical treatments will be applied both prophylactically and after the development of sour rot to determine their ability to prevent infection and/or to reduce volatile acidity once sour rot is established. These experiments will be repeated a second and third year to accumulate data on responses over a number of weather seasons.

Read Final Report

Completed: 15/01/2010
Lead Researcher: Kevin Ker

A significant challenge to the production and processing of premium grapes is the infestation by Multi Coloured Asian Lady Beetle (MALB) close to harvest. Due to the uncertainty of populations and zones of infestation many growers are left guessing whether or not to treat for MALB and if populations are high enough to warrant control. Populations of MLB are erratic with no two growing seasons having the same numbers of MALB present or cultivars impacted. Wine quality has been documented as severely affected and it has been published that the best control strategy for MALB must take place at the vineyard level

To assess MALB activity across the Niagara Region in the pre harvest and Harvest period to provide information to producers on locations of activity and to assist in determining if preventative controls are required. Information to be posted on KCMS website and brief oral message recorded each week on the GGO Crop report 905 708 6620

Read Final Report

Completed: 31/03/2012
Lead Researcher: Isabelle Lesschaeve

The demand for local products as well as organic or sustainable production has created a major gap in the wine market which presents a tremendous opportunity to the Ontario wine industry. In order to fill this gap and increase market share for 100% Ontario wines, it is necessary to understand consumer preferences and behaviour. There is currently a serious lack of knowledge of how Ontario consumers actually respond to the production practices and region of origin of wines they purchase and this project aims to address this. This research will combine innovative methods in sensory and consumer science and behavioural economics to determine Ontario consumers’ perceptions and preferences for buying and consuming local, organic or sustainable wines in relation to price, sensory experience, and region of origin. This will identify critical psychological and sensory factors determining consumer purchase and consumption behaviours, allowing the Ontario grape and wine sector to make informed decisions in order to deliver the products consumers want.

Read Final Report

Completed: 01/10/2010
Lead Researcher: Rebecca Hallett

A systematic approach to identify volatiles from grape during ripening that strongly attract MALB into vineyards is necessary to design effective push-pull strategies to control MALB entrance into vineyards. Dr. Rebecca Hallett from the University of Guelph has the ability to collect, separate and identify volatiles to then determine which volatiles elicit an antennal response in MALB and hence identify compounds that attract and/or repel MALB (technique called GC-EAD, see note below). In terms of repellency effects, we have speculated that potassium metabisulfite (KMS) sprayed in vineyards to control sour rot may also be having an irritant effect on insects in the vineyard based on the observed activity of fruit flies post spray. This irritant effect may prove to act as a repellant for MALB in the vineyard with no negative residual effect on wine fermentation since residual sulfur dioxide has not been reported in the juice of grapes processed from KMS-sprayed vineyards 1 day after spray application. This project will be designed to identify grape volatiles in the vineyard that strongly elicit a MALB response as well as test the repellency effect of KMS as a first step in developing a push-pull strategy to repel MALB from vineyards.

Read Final Report

Completed: 01/08/2010
Lead Researcher: Gary Pickering

Isopropylmethoxypyrazine (IPMP) has previously been identified by Gary Pickering as the causal agent of MALB taint. In comparing the IPMP levels in wines produced from fruit infested with either 7-spot or MALB, our study last year indicated both lady beetle species released similar levels of IPMP into wine. Funding is requested to complete sensory evaluation of the experimental wines to compare the taint from 7-spot lady beetle to MALB. The second part of this project is focused on juice treatment to remove lady beetle taint prior to fermentation. No fining agent has been identified to date that has the ability to remove Isopropylmethoxypyrazine (IPMP), the causal agent of MALB taint, to below sensory detection threshold (approximately 1 ng/L). However, the majority of agents tested have not been specifically targeted to bind to IPMP. Odorant binding proteins from mammals naturally bind methoxypyrazines as part of their olfaction system to assist them in finding food. An odorant binding protein (OBP) from porcine has now been identified that binds methoxypyrazines at a low pH of 3.5, close to the pH value found in grape juice. Dr. Inglis’ lab has engineered a readily available source of this protein that can now be tested for its ability to remove IPMP from tainted juice/wine. In collaboration with a colleague in the chemistry department, a delivery method to add the protein to tainted juice and remove the bound complex can be tested by trapping the protein in a silica glass bead matrix. The measurement of IPMP pre and post fining will be done in collaboration with Dr. Pickering using the lower sensitivity measurement method developed in his laboratory. This strategy of removing methoxypyrazines from juice also has applications to remove/reduce the “green” character from methoxypyrazines (mainly isobutylmethoxypyrazines) in under-ripe grapes that is often problematic in cool climate growing regions such as ours. Hence, this strategy is not only limited to remediating juice tainted by MALB and 7-spot, but also to adjust the green character in juice due to excessive levels of isobutylmethoxypyrazines (IBMP) in grapes at harvest.

Read Final Report

Ongoing Project
Lead Researcher: Wendy McFadden-Smith

Cultural practices and chemical treatments will be integrated to manage sour rot.  These will address this challenge in several ways: reducing cluster tightness, increasing skin resistance to splitting, reducing vinegar fly infestations and reducing sour rot pathogen populations.  Several chemical treatments, including biocontrol agents and potassium metabisulphite will be tested to determine optimum use timing and rate.  Cluster architecture will be manipulated by plant growth regulators (natural and synthetic), reduction of photosynthate available during bloom (mechanical and hand leaf removal and antitranspirant spray) and mechanical blossom thinning post bloom.  The relationship among the vector (vinegar flies), sour rot organisms, and host susceptibility will be elucidated.  Using field observations and inoculations under controlled environment, a model will be developed to determine when berries are susceptible to infection.  A threshold for degree of vineyard infection relative to volatile acidity will be developed and the impact of different levels of sour rot on wine quality will be evaluated. The effects of crop load and leaf removal timing and severity on sour rot, yield and fruit quality will be determined. 

Completed: 11/20/2015
Lead Researcher: Simon Lachance

The house fly is of concern in rural and urban areas in part as it can be a nuisance to people and has the potential to spread diseases to humans. House flies may cause public health issues, loss of business income due to diminishing clientele and legal actions. As part of a larger effort to manage house flies in animal production, a project will focus on identifying reasons why house flies might be dispersing from poultry operations (sources) to the Ontario grape and wine value-added industry chain receptors: grape growers, wineries, restaurants, client neighbours, client businesses etc. and how best to mitigate the nuisance problem given that poultry operations and rural residential areas must co-exist in Ontario. This will include developing efficient outdoor sampling methods to correlate the abundance of flies at the source to receptors; identifying potential breeding and resting sites for house flies at receptors; establishing best management practices to minimize the nuisance of house flies; and estimating the potential risks of disease transmission to humans from house flies.

Flies will be captured by sticky cards at a broad range of receptors from mid-April to the end of October and identified and sexed. Correlations with densities inside and directly outside source barns will be used to determine thresholds for human nuisance.  Flies collected at receptors will be tested for the presence of Salmonella and E. coli. The percentage of bacteria positive flies and seasonal abundance of house flies will provide an estimation of the risk of bacterial transmission from some of the source barns to receptors. If pathogenic bacteria are present, bacterial resistance to antibiotics will be tested in the laboratory. Surveys of potential breeding and resting sites of house flies will be performed during peak adult fly activity periods at 25 locations, and at least at 3 grape growers, 3 wineries, 3 restaurants and 3 neighbours, within 1 km of source barns, by visual observations and counts of adult flies on organic substrates and structural surfaces.

Read Final Report

Completed: 31/10/2013
Lead Researcher: BLOOM

Given the crucial role of water in winemaking and the subsequent generation of wastewater, a need has been identified to support Ontario wineries with successfully solving their current and emerging wastewater issues.  Given the broad variation in the operations and organizational capacity of individual winery operations, there are challenges across the sector associated with understanding wastewater issues, relevant solutions and adoption approaches.

This project is focused on consolidating and transferring the knowledge necessary to build capacity of wineries to address priority water and wastewater challenges within the sector through actionable solutions that provides business value for the winery.

Read Final Report

Ongoing Project
Lead Researcher: Adam Dale

This project will develop viticulture best practices, to support the grape and wine industry in the Ontario South Coast region as it addresses performance of vines in sandy soils in relation to drought stress, and climate change. Rootstocks adapt grafted vines to site conditions. The project objectives will be addressed in two ways: 1. Riparia vines growing in the area (adapted to the area) will be evaluated as rootstocks.  2. The best available rootstocks will be evaluated through trials in the proposed DVA.

1. A large collection of rootstock material (900 plants) will be screened using plant characteristics that are linked to drought tolerance, to identify 40 candidate rootstocks. Proline assay technology will be used to reduce the number of genotypes from 40 to a 10 for further assessment. These ten selected genotypes will be tested for their acute drought resistance in controlled environments at 3 different drought levels. These trials will be repeated over three years.  A second series of trials with these same 10 rootstocks will assess how well they support grafted “Pinot Noir” scions. Performance of rootstocks will be assessed through Pinot Noir vine health, vigor, fruit quality and production. The morphological, biochemical (proline content) and physiological characteristics of the rootstocks together with the Pinot Noir scion performance will be used to rank the ten Riparia rootstocks. Knowledge of level of drought stress tolerance will be valuable complimentary information to growers.

2. This project will implement field trials of 4 vinifera grapes (selected from the Varietal Plan of the Grape Growers of Ontario), grafted onto 4 commercial rootstocks. These trials will assess the vines for their performance, including yield and fruit quality in five different sites in Ontario.

Ongoing Project
Lead Researcher: Baozhong Meng

In this project, there are four main objectives: (1). To establish and validate nucleic acid-based methodologies [reverse transcription (RT)-PCR and quantitative RT-PCR (RT-qPCR)] for the detection of important grapevine viruses individually and in a multiplex format;  (2). Production of highly specific antibodies for use in serological detection of four major grape viruses;  (3). To develop and validate serology-based methodologies (dot-ELISA) for the detection of these viruses individually and in a multiplex format; and (4). To compare and evaluate the efficacy and cost-effectiveness of both of these methods for the detection of the target viruses and to transfer the technologies for adoption for large-scale applications. 

There is potential for a significant return from this project as the technologies developed will greatly enhance productivity, quality, sustainability, and international competitiveness of Ontario grape and wine industries through the implementation of clean stock programs.  The technologies aimed at being developed in this project are a central piece for many research and development projects related to the clean stock and mitigation programs pertaining to viruses and viral diseases of grapes.

Ongoing Project 
Lead Researcher: Chrystel Olivier

Grapevine red blotch associated virus (GRBaV) has been designated as a serious virus disease of grapevine due its impact on fruit quality and grapevine health. Very little is known about its epidemiology, except that the virus is graft-transmissible and can be transmitted from grapevine to grapevine by the Virginia creeper leafhopper under laboratory conditions. In this project, it is proposed that researchers will identify the leafhopper species in Niagara, Prince Edward County, and south-western Ontario vineyards during the summer and fall of 2014 and to investigate the GRBaV vectoring ability of up to 5 leafhopper species. Leafhoppers will be collected in commercial vineyards in the Niagara region, using sweeping nets and sticky traps. Collected leafhoppers will be identified and counted, providing information on the prevalence and geographical distribution of leafhopper species in vineyards. All collected leafhoppers will also be tested for the presence of GRBaV using molecular (PCR) tests to identify potential leafhopper vectors. Laboratory transmission assays will be run on the most prevalent GRB-positive leafhopper species, to determine if those species can transmit GRB from grapevine to grapevine.